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Flexural Stress Distribution near a
Sharp Crack

G. C. SIH*
Lehigh University, Bethlehem, Pa,

THE evaluation of critical crack lengths in structural mem-
bers has been correlated recently to loading parameters1

that are derivable from the theory of elasticity. Funda-
mentally, the cause of rapid crack extension under static
loads is attributed to the singular character of the stress dis-
tribution in the vicinity of a crack point. As a result, elastic
stress analyses of cracked bodies for various loadings and
configurations have received increasing attention, particu-
larly in the analysis of fracture.2' 3

Now, in order to apply the forementioned fracture concepts
to the flexure of cylinders containing crack-like imperfec-
tions, it is pertinent to acquire a knowledge of their crack-tip
stress field. The main purpose of this note, therefore, is to
provide that information.

The problem will be formulated in terms of the classical
Saint-Venant flexure function,4 <£(£,?/), where the associated
twist is assumed to vanish for symmetric cross sections in the
interest of clarity. In this case, the field equations are given
bv

W
Tzx = — 2(1 + „).

W
Tzu = — 2(1 + v)I byi- + (2 + iO*y (1)

Here, v is the Poisson's ratio, W the terminal load directed
parallel to one of the principal axes through the centroid;
and I the moment of inertia about an axis perpendicular to
the load. Although Eq. (1) is only a special case of the
general flexure problem,5 the characteristics of the stress
singularities may be found with no loss in generality.!

The character of the singular stresses may be obtained most
conveniently by restricting attention to a small region sur-
rounding the crack point and expressing the stress components
in polar coordinates (Fig. 1). Hence, Eq. (1) becomes
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where the nonsingular terms are neglected, since they are
inconsequential quantities in fracture analyses. The ap-
propriate form of $ now will be determined by the eigen-
function expansion method, which first was used by Williams
for solving biharmonic equations in the stretching6 and bend-
ing7 of cracked plates. A product solution of the form

F(0- An)

will satisfy the harmonic equation, V2$ = 0, if

(3)
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upon application of the general flexure theory, since the singular
character of the stresses depends only on the fact that the flexure
functions are harmonic. Thus, the results will be affected only in
a quantitative manner confined to the loading parameters.

] An) = an si bn (4)

Introducing the free crack surface conditions, rzy = 0 for
6 = ± TT, the values of the eigenparameter \n are chosen as
the positive roots of the characteristic equation

COtX»7T = 0

Therefore

\n = (2n n - 0,1,2, . . . (6)

The negative values of n have been excluded from the solu-
tion in order that the axial displacement w, being linearly
dependent on <£, is finite as r approaches the origin. Upon
substitution of Eqs. (3) and (4) into (2), the significant stress
components corresponding to the minimum eigenvalue,
Amin = J, are

(7)
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Equation (7) implies that the distribution of flexural stress
always has the same functional form near the singularity
caused by the crack point and that it differs only by a param-
eter a0, depending on the crack geometry. This result sug-
gests the possibilities for expansion of the current fracture
theory to the flexure of cracked cylinders. For example, ac-
cording to the Griffith-Irwin theory, unstable crack geometry
under a given load will correspond to some critical value of a0.

A method for determining the constant a0 is given in an
earlier investigation.8 Numerical examples for computing
a0 are left to the reader, who may refer to Shepherd's9 work
for a circular section with two equal radial cracks extending
inward from the boundary of the section.
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Fig. 1 Notation for rectangular components of shear near
a crack tip
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where clearly a and b are constants, and C/i, Uz} U& are func-
tions only of a, ft, y, respectively, given by
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Equilibrium Orientations of Gravity-
Gradient Satellites
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THE gravitational torque that acts on an orbiting
satellite represents an automatic mechanism for attitude

control in space. Since configurations sufficiently elongated
in the earth-vertical direction experience a positive restoring
couple due to the gradient of gravitational attraction when
displaced from 'equilibrium orientation, systems based on
this principle can be of a passive character. Practical in-
terest in gravitationally oriented satellites is conditioned by
the additional amount of mechanical control which will be
required to assure adequate precision of orientation. A cal-
culation is indicated which demonstrates that there is an
infinity of equilibrium satellite orientations, in which no
control is therefore required. All are in the neighborhood
of those discrete orientations for which the gravitational
torque is zero.

An equilibrium orientation in space is defined by the di-
rections of orbital angular velocity and instantaneous earth-
vertical. If satellite principal inertia axes x\ and x% occupy
these directions, respectively, and xz is directed opposite to
instantaneous linear orbital velocity, the axes form a right-
handed triad, gravitational torque is zero, and orbital centrif-
ugal forces are balanced by gravitational attraction. When
small angular displacements a, /3, y are produced by rotating
about xij xz, xsj respectively, the equilibrium is disturbed
and the ensuing angular vibrations about satellite mass center
are governed by an extended form of Euler's equations of
rigid-body motion:

Aa + 3122(£ - C)a = 0 (1)
Eft +

Cy +

+ Q(A - B - C)y = 0 (2)

(3)- B)y - Q(A - B - C}ft = 0

Principal-axis moments of inertia are denoted by A, B, C and
12 represents orbital angular speed for an orbit assumed for
simplicity to be circular; dots indicate differentiations with
respect to time. Eqs. (1-3) differ from the forms given in
treatises on dynamics, owing to two causes.1 One is the
inclusion on the left-hand sides of the equations of the com-
ponents of gravitational torque, and the other is due to the
complete form of the total moment of momentum for a body
in motion about a point not fixed in space.

In order to obtain a useful integral of the system of Eqs.
(1-3), it is convenient to rewrite them as

do

'(30
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Multiplying Eqs. (!', 2', and 30 in turn by 12a, bft, and ay
and adding, one obtains by means of a single integration

(Ita2 + &/32 + a72)/2 = fltfi + bUz + aC73 + K' (4)

where K' is a constant of integration. An equilibrium orien-
tation is recognized by the simultaneous and persistent
conditions a = ft = y = 0. Thus if each of the angular ve-
locities a, ft, y is put equal to zero in Eq. (4), the right-hand
side furnishes the geometrical condition that is necessary to
secure the corresponding equilibrium orientation. The
method employed to obtain the result hardly differs from
that used by Jacobi in his treatment of the problem of
Lagrange's three particles.2

Writing now

U(a,ft,y) = bU,
Eq: (4) reduces to

U(a,ft,y) = -K' (5)
Although the particular orientation given by a = ft = y = 0
is seen from Eqs. (1-3) to represent one orientation of dynam-
ical equilibrium (that one which corresponds to zero gravi-
tational torque), Eq. (5) shows that there is an entire
one-parameter family of points in a,/3,y space for which the
same condition is true. For all of the orientations, in general,
a net gravitational torque is present but is exactly balanced by
the couple generated by the static gradient of centrifugal
forces in the orbital motion.

A case of special interest from the practical viewpoint is
that in which the satellite possesses axial symmetry about
the earth-vertical direction, so that A = B. In this case
it is easy to see that Eq. (5) reduces to

= f / K
and evidently the constant K must vanish, since a = 0,
ft = 0 are values corresponding to one solution.

In addition to demonstrating that many equilibrium orien-
tations are to be found in the same neighborhood of attitudes,
the present result may be useful in determining advantageous
contours for communications satellite reflector disks.

Finally it is noted that the present calculation bridges the
gap between two well-known results. Although a spherically
symmetric mass distribution possesses a double infinity of
equilibrium orientations (i.e., it has no preferred directions),
and two point masses attached to a weightless rod possess
only six discrete equilibrium orientations (two of which are
stable3), the calculation shows that for a general distribution
of mass there are a single infinity of orientations replacing
each of the six discrete ones found by Synge.
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